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Abstract— Visual planning simulates how humans make de-
cisions to achieve desired goals in the form of searching for
visual causal transitions between an initial visual state and a
final visual goal state. It has become increasingly important
in egocentric vision with its advantages in guiding agents to
perform daily tasks in complex environments. In this paper,
we propose an interpretable and generalizable visual planning
framework consisting of i) a novel Substitution-based Concept
Learner (SCL) that abstracts visual inputs into disentangled
concept representations, ii) symbol abstraction and reasoning
that performs task planning via the learned symbols, and iii)
a Visual Causal Transition model (ViCT) that grounds visual
causal transitions to semantically similar real-world actions.
Given an initial state, we perform goal-conditioned visual plan-
ning with a symbolic reasoning method fueled by the learned
representations and causal transitions to reach the goal state.
To verify the effectiveness of the proposed model, we collect
a large-scale visual planning dataset based on AI2-THOR,
dubbed as CCTP. Extensive experiments on this challenging
dataset demonstrate the superior performance of our method in
visual planning. Empirically, we show that our framework can
generalize to unseen task trajectories, unseen object categories,
and real-world data. Further details of this work are provided
at https://fqyqc.github.io/ConTranPlan/.

I. INTRODUCTION

As one of the fundamental abilities of human intelligence,
planning is the process of insightfully proposing a sequence
of actions to achieve desired goals, which requires the capac-
ity to think ahead, to employ knowledge of causality, and the
capacity of imagination [1, 2], so as to reason and foresee the
proper actions and their consequences on the states for all
the intermediate transition steps before finally reaching the
goal state. Visual planning simulates this thinking process
of sequential causal imagination in the form of searching
for visual transitions between an initial visual state and
a final visual goal state. With its advantages in guiding
agents to perform daily tasks in the first-person view, visual
planning has become more and more important in egocentric
vision [3] and embodied AI. In robotics, visual planning
could also avoid manually designing the required specific
goal conditions, action preconditions, and effects for robots.

Previous works for visual planning can be roughly catego-
rized into three tracks, i.e., neural-network-based models [4,
5], reinforcement-learning-based models [6, 7] and classic
search-based models [8, 9]. Neural-network-based models
can be trained in an end-to-end manner, which tends to fall
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Fig. 1: Our visual planning framework. Given an initial state and
a goal state, we aim to predict the intermediate states (in the second
row) that will guide a robot to manipulate the target objects (in the
third row). The disentangled concept-based representation C and
abstracted symbol representation Ω, as well as their corresponding
causal transition T and symbol reasoning S, are effectively com-
bined into a bi-level planning framework for better generalization
(in the first row).

short in terms of its interpretability [10]. Reinforcement-
learning-based models can perform goal-conditioned deci-
sions, but could suffer from sparse reward, low data effi-
ciency [11], and low environment and task generalization
ability [12]. Considering these limitations and inspired by
human cognition, our method falls into the third “search-
based” category and further proposes three key components
for visual planning, namely representation learning, sym-
bolic reasoning, and causal transition modeling. Represen-
tation learning focuses on extracting objects’ dynamic and
goal-oriented attributes. Symbolic reasoning performs action
planning at the abstract higher level via learned symbols.
Causal transition models the visual preconditions and action
effects on attribute changes.

At the perception level, we propose to learn concept-
based disentangled representation and believe such human-
like perception ability to abstract concepts from observations
is vital for visual causal transition modeling [13]. The
reason is that such representation learning could encode
images at a higher semantic level beyond pixels, identifying
distinct attribute concepts and isolating “essential” factors
of variation, thus serving causal learning [14]. This also
enhances both robustness and interpretability [14–16], and
facilitates compositional generalization to unseen scenarios
in zero-shot inference [14, 17–19], thereby supporting a
wide range of real-world downstream tasks. At the reason-



ing and planning level, we argue that understanding the
atomic causal mechanisms is inevitable for task planning.
Leveraging learned disentangled representations of concepts,
we gain insight into the core of atomic causal transitions,
which involves identifying key relevant variable concepts
and predicting the outcomes of actions executed upon them.
The understanding and reasoning of the abstract higher-level
task planning composed of the lower-level atomic causal
transition also have the potential to be more generaliz-
able and interpretable [20, 21]. Thus, we propose a visual
causal transition model (ViCT) and its abstracted symbolic
transition model, which corresponds to the discrete higher-
level task planning and avoids the problem of “error accu-
mulation” [22]. Guided by symbolic transition, the visual
transition reconstructs intermediate and final goal images.

Technically, there are three critical modules in our vi-
sual planning framework. First, a novel Substitution-based
Concept Learner (SCL) (Sec. III-A) is learned by switching
the latent concept representations of a pair of images with
different attribute concepts. Second, a set of state symbols is
abstracted from clustering low-level concept token represen-
tations (Sec. III-B). The most efficient symbolic transition
path can be found via a Markov Decision Process (MDP).
Third, a visual transition model (Sec. III-C) is proposed
to learn the action-induced transition of the changeable at-
tributes given the concept representations of the precondition
image and thus generate the resulting effect image. To verify
the effectiveness of our framework, we collect a large-scale
visual planning dataset, which contains a concept learning
dataset and a causal planning dataset. Extensive comparison
experiments and ablation studies on this dataset demonstrate
that our model achieves superior performance in the visual
planning task and various forms of generalization tests.

To summarize our main contributions: (i) We propose
a novel concept-based visual planning framework, which
models both discrete symbolic transition and continuous
visual transition for efficient path search and intermediate
image generations. Comprehensive experiments show that
our method achieves superior performances in visual task
planning and generalization tests. (ii) Apart from generaliz-
ability, our method has better interpretability by generating
a causal chain (the action sequences and the intermediate
state images) to explicitly demonstrate the transition process
to the goal. (iii) We collect a large-scale visual planning
dataset, which can foster future research in the community.

A. Related Work

Visual planning is feasible with the learned representation
and atomic causal effects. [23] proposed a method for long-
horizon deformable object manipulation tasks from sensory
observations, which relies heavily on differentiable physics
simulators. [8] performed a tree-search-based planning al-
gorithm on the learned world representation after applying
high-level actions for visual robot task planning, but they
ignored learning disentangled representations. [4] learned
how to plan a goal-directed decision-making procedure from
real-world videos, leveraging the structured and plannable
latent state and action spaces learned from human instruc-
tional videos, but their transformer-based end-to-end model

is hard to generalize to unseen planning tasks. [5] proposed a
model based on deep neural networks consisting of encoding,
action-conditional transformation, and decoding for video
prediction in Atari Games, but they do not abstract symbols
for efficient reasoning. [24] is the most similar to ours, which
learned symbolic operators for task and motion planning, but
cannot generate intermediate images.

Concept-based disentangled representation learning
has emerged as a popular way of extracting human-
interpretable representations [25]. Discrete and semantically-
grounded representation is argued to be helpful for human
understanding and abstract visual reasoning, enables few-
shot or zero-shot learning and leads to better down-stream
task performance [26, 27]. Previous studies tried to learn
disentangled concept representation either in a completely
unsupervised manner [28–31], or via weak supervision and
implicit prototype representations [32], or by employing
supervision from the linguistic space [33, 34]. There have
been diverse learning techniques, such as Transformer [31],
(sequential) variational autoencoder [29, 30], and informa-
tion maximizing generative adversarial nets [28], etc. Ex-
isting techniques have proved successful on objects mostly
with limited variation, such as digits, simple geometric ob-
jects [32], and faces [28]. In this work, we propose a variant
of [31] by imposing more reconstruction constraints, which
works very well on more complex household objects with
diverse variations (Sec. II) and better benefits the downstream
planning task compared to prior works.

Causal reasoning for task understanding is one of the
essential capabilities of human intelligence, and a big chal-
lenge for AI with the difficulty of generating a detailed
understanding of situated actions, their dependencies, and
causal effects on object states [35]. Various evaluated state-
of-the-art models only thrive on the perception-based de-
scriptive task, but perform poorly on the causal tasks (i.e.,
explanatory, predictive, and counterfactual tasks), suggesting
that a principled approach for causal reasoning should in-
corporate not only disentangled and semantically grounded
visual perception, but also the underlying hierarchical causal
relations and dynamics [36]. [37] built a sequential Causal
And-Or Graph (C-AOG) to represent actions and their effects
on objects over time, but suffers from ambiguity in real-life
images due to their not-well-disentangled representation. Our
work benefits from our disentangled concept representation
by finding a latent space where important factors could be
isolated from other confounding factors [17], and we ground
actions to their causal effects on relevant object attributes.
Our bi-level causal planning framework with discrete sym-
bolic transition and continuous visual transition also helps to
resist the real-world data noises and ambiguity.

II. ENVIRONMENT & DATASET

To facilitate the learning and evaluation of the concept-
based visual planning task, we collect a large-scale RGB-D
image sequence dataset named CCTP (Concept-based Causal
Transition Planning) based on AI2-THOR simulator [38].
We exclude scene transitions in each task by design to
focus more on concept and causal transition learning, i.e.,
each task is performed on a fixed workbench, although



the workbenches and scenes vary from task to task. The
frame resolution is 384ˆ256, converted into 256ˆ256 at
the beginning of our method. The whole dataset consists
of a concept learning dataset and a visual causal planning
dataset, which we will illustrate in detail below.

A. Concept Learning Dataset

We learn six different kinds of concepts: TYPE,
POSITION_X, POSITION_Y, ROTATION, COLOR, and
SIZE. TYPE refers to the object category. The dataset has
eight different types of objects in total, including Bread, Cup,
Egg, Lettuce, Plate, Tomato, Pot, and Dyer, all of which
can be manipulated on the workbench. We manually add the
COLOR concept to the target object by editing the color of
the object in its HSV space. This leads to 6 different colors
for each object, and 20 samples are provided for each color
to avoid sample bias. For SIZE concept, we rescale each
target object to 4 different sizes as its concept set. As for
the position, we use POSITION_X and POSITION_Y to
refer to the coordinates along the horizontal X-axis and the
vertical Y-axis w.r.t. the workbench surface. We discretize
POSITION_X with 3 values and POSITION_Y with 5.
Notably, changes in POSITION_X and POSITION_Y also
cause variant perspectives of an object. For ROTATION, we
set 0, 90, 180 and 270 degrees for all types of objects. We
exhaustively generate all possible target objects with different
value combinations of the six concepts, resulting in 234,400
images. Leveraging the masks provided by AI2-THOR, we
isolate the foreground images, containing only the target
object with a black background. We randomly choose 40% of
the concept combinations for training. For each image X0,f

in the training set and each concept index i, we search for
image X1,f within the training set such that X0,f and X1,f

differ only in the i-th concept. We use such paired images
and the corresponding label i for concept learning.

B. Causal Planning Dataset

A causal planning task consists of several steps of state
transitions, each caused by an atomic action. We define
seven different atomic actions in our dataset, including
move_front, move_back, move_left, move_right,
rotate_left, rotate_right, and change_color.
The magnitude of each action is fixed. The target object
states (e.g., its color) are randomly initialized in each task
from our dataset. The task lengths (i.e., the number of steps
for each task) are not fixed. We collect four subsets of tasks,
each representing a difficulty level. In the first level, the
workbench has no obstacles, and the ground truth actions
involve only movements. In the second level, several fixed
obstacles appear on the workbench. In the third level, a dyer
additionally appears on the workbench, and the target object
must be moved adjacent to the dyer to change its color if
necessary before moving to the target position. In the fourth
level, rotation actions are involved additionally. The action
sequence in each task is paired with the corresponding visual
observations. The maximum task lengths for each subset are
6, 9, 15, and 16, and the average are 2.67, 2.81, 4.66, and
5.64, respectively. Each subset contains 10,000 tasks: 8,000
for training, 1,000 for validation, and 1,000 for testing.
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Fig. 2: Architecture of SCL. Foreground images X0,f and X1,f

differ only in the COLOR concept. After extracting their concept
tokens and assuming the token c5i to represent the color concept,
the COLOR concept c50 of X0,f is substituted by c51 from X1,f ,
which are then fed into the detokenizer and decoder to reconstruct
images.

We construct additional generalization test benchmarks
based on our collection. We provide four levels of Unseen
Object generalization tests for object-level generalization.
For each level, we generate 1000 tasks with the target
object types unseen in the training dataset, including object
types of Cellphone, Dish Sponge, Saltshaker, and Potato.
Additionally, we provide datasets for generalization tests for
unseen tasks. The training and testing tasks in the Unseen
Task dataset have different combinations of action types. For
example, the training dataset may include tasks that consist
of only move_left and move_front actions, as well as
tasks that consist of only move_right and move_back
actions, while the testing dataset contains tasks from the
held-out data with different combinations. The Unseen Task
dataset is limited to level-1 and level-2 because limited
combinations of actions are insufficient to accomplish more
difficult tasks.

III. METHOD

Given an initial RGB-D state image X0 and a final RGB-
D state image XT , our task is to find a valid and efficient
state transition path with an inferred sequence of actions
Γ“ tatut“1,...,T , as well as generating intermediate and
final state images X̃ “ tX̃tut“1,...,T . To fulfill this task,
we use a concept learner to extract disentangled concept
representations for state images, abstract concept symbols
for reasoning, and train a ViCT to generate intermediate state
images.

A. Substitution-based Concept Learner

The architecture of our SCL is illustrated in Fig. 2. A
pair of foreground images X0,f and X1,f are given as
input, where these two images contain two objects differing
only in one concept, e.g., a yellow pot and a green pot.
Then a shared encoder ϕE is applied to the foreground
images to obtain the latent embeddings Zi,f “ϕEpXi,f q. The
embedding Zi,f is further fed into a concept tokenizer ψT

to generate the concept tokens Ci “ tcki uk“1,...,6 “ψT pZi,f q.
Here k is the concept index, and we assume there exist six
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1

1 with the action embedding Vpaq. The background encoder converts the background image into
latent vectors, which are then combined with predicted concept tokens C

1

1 to generate the effect image X̃1.

visual concepts, i.e., TYPE, POSITION_X, POSITION_Y,
ROTATION, COLOR, and SIZE, representing the visual
attributes of the target objects (refer to Sec. II-A for details).

The concept token ci0 is substituted with ci1 to get a
new concept token vector C

1

0, where i indexes the different
concept between the paired images X0,f and X1,f . For
example, the token c5i assumes to represent the color
concept in Fig. 2, so replacing c50 with c51 will change the
original yellow pot to a green pot. The token vector C

1

0

is fed into a concept detokenizer ψD to reconstruct the
latent embedding Z

1

1,f “ψDpC
1

0q, which is further decoded
into image X̃1,f “ϕDpZ

1

1,f q. After the concept detokenizer
and decoder, we obtain a combined reconstruction loss as
follows:

L1 “LMSEpX
1

0,f , X0,f q`LMSEpX̃1,f , X1,f q, (1)

where LMSE is the mean squared error. In addition, we
add another branch that directly connected the encoder to
the decoder. This branch aims to distinguish the role of the
encoder from that of the concept tokenizer; it enforces the
encoder to learn hidden representations by reconstructing
X0,f . The reconstructed image and reconstruction loss of
this branch are X̂0,f and LMSEpX̂0,f , X0,f q, respectively.
Similar to [31], a Concept Disentangling Loss (CDL) is
employed to reduce interference between the concept tokens.
The CDL can be formulated as follows:

LCDL “LCEp∥C0 ´C1∥2, iq, (2)

where LCE is the cross-entropy loss. ∥C0 ´C1∥2 calculates
the l2 norm of the variation of each concept token. i is the
ground-truth token index and indicates that the i-th concept
token is replaced. The total loss LC of concept learner is as
follows:

LC “L1 `LMSEpX̂0,f , X0,f q`LCDL, (3)

where the equal weights for each loss work well in our
experimental settings.

B. Symbol Abstraction and Reasoning

Symbol abstraction aims to convert concept tokens into
discrete symbols for later symbolic reasoning. Our empirical
results in Fig. 6 show that the concept tokens learned in
Sec. III-A are well-disentangled and can be easily clustered
into several categories. Therefore, a clustering algorithm
could be applied to the concept tokens to generate symbols.
Specifically, we collect all the concept tokens extracted from

the training data using the SCL and create the concept
token spaces: C“ tcnu. Then, we employ the K-means
algorithm to cluster data points within the concept spaces,
resulting in the concept centers tc̄u and a symbol assignment
ω“σpc, tc̄uq for each concept token c. Here, σ is the
nearest neighbor function, which assigns the symbol of the
nearest concept center to c. This procedure is independently
applied to six defined concepts, with each concept assigned
a specific number of clustering centers that correspond to
their predefined value spaces, abstracting a set of concept
symbols Ω“

␣

ωk
(

k“1,...,6
for each image.

The symbolic reasoning aims to find the most plausible
transition path from the initial state to the goal state at the
symbol level, which can be formulated as an MDP. Given
the initial concept symbols Ω0 “ tωk

0uk“1,...,6 and the action
a0, the symbol reasoner computes the distribution of concept
symbols at the next timestep Pr

”

Ω
1

1 | a0,Ω0

ı

. The concept
symbol distribution at the timestep t can be obtained as
follows:

Pr
”

Ω
1

t | a0:t´1,Ω0

ı

“
ÿ

oPΩ

Pr
”

Ω
1

t | at´1,Ω
1

t´1 “ o
ı

¨Pr
”

Ω
1

t´1 “ o | a0:t´2,Ω0

ı

,
(4)

where Ω denotes the the entire concept symbol space.
Additionally, two legality checks are implemented during
the reasoning process to ensure the validity of the action
sequence, involving action legality and state legality checks.
The action legality is defined as 111Prra|Ωsąthresh. This check
aims to prevent the use of noise-inducing transformations
caused by the SCL, thereby modifying Eq. (4) to:

Pr
”

Ω
1

t | a0:t´1,Ω0

ı

“
ÿ

oPΩ

111Prrat´1|osąthresh Pr
”

Ω
1

t | at´1,Ω
1

t´1 “ o
ı

Pr
”

Ω
1

t´1 “ o | a0:t´2,Ω0

ı

.
(5)

The state legality check is designed to eliminate contribu-
tions to the distribution originating from invalid states (e.g.,
collisions with obstacles on the workbench). It can be written
as follows:

Pr
”

Ω
1

t “ o0 | a0:t´1,Ω0; tΩenvu

ı

“

111o0PΩvalid
¨Pr

”

Ω
1

t “ o0 | a0:t´1,Ω0

ı

ř

oPΩvalid
Pr

“

Ω
1

t “ o | a0:t´1,Ω0

‰

(6)

where Ωvalid ĎΩ represents the set of valid concept sym-
bols given the concept symbols of other objects in the
environment, and o0 is an arbitrary element within Ω. To



reduce computational complexity, the reasoning process is
individually applied to each concept. This approach is effec-
tive due to the well-designed disentangled concepts, which
ensure that the changes in each concept are independent
given a particular action. The MDP estimates symbol-level
transition probability distribution by recording the (input,
action, output) triplets in the training data. The objective is
to discover the action sequence a0:T´1 that is most likely
to result in a distribution of concept symbols Ω

1

T closely
approximating the goal concept symbols ΩT . This action
sequence is then passed into the ViCT (See Sec. III-C) to
generate predicted intermediate images (Fig. 1).

C. Visual Causal Transition Learning

The aim of ViCT is to generate visual effect images based
on precondition images and human actions. For example,
Fig. 3 shows an action that moves the pot one step to the
right. ViCT predicts image X̃1 by transforming the pot in
image X0 with a move_right action.

As seen in Fig. 3, three parts exist in the framework of
ViCT. Firstly, the causal transition is the key part of ViCT.
This process transforms object concept tokens from C0 to C

1

1

with the help of an action embedding Vpaq. The action a is
encoded into a one-hot vector and further embedded via an
embedding function V to achieve this. The transition process
is as follows:

C
1

1 “ T pC0,Vpaqq, (7)

where C
1

1 represents the resulting concept tokens. T denotes
the causal transition function involved in this process. In
addition to the causal transition component, two other crucial
parts in ViCT are dedicated to managing visual extraction
and reconstruction. The second part contains a concept
tokenizer to extract foreground object concept tokens C0 for
later transitions. This concept tokenizer has been trained as
described in Sec. III-A and fixed here. This part also involves
a background encoder ρE , which processes the background
image to produce latent vectors represented as Z0,b. The
vectors Z0,b store background-related information and will
be used to generate the resultant image X̃1. The third part
combines foreground object concept tokens and background
latent vectors to predict effect image X̃1 with the background
decoder ρD. Instead of directly using concept tokens, we
convert them back to latent embeddings, i.e., from C

1

1 to
Z

1

1,f , and then concatenate Z
1

1,f with latent vectors Z0,b as
the input to the decoder. Similarly, we can also combine Z

1

0,f

and Z0,b to obtain a reconstruction image X
1

0.
Now two losses can be computed during training: a

reconstruction loss LMSEpX
1

0, X0q and a prediction loss
LMSEpX̃1, X1q. In addition to measuring image-level pre-
diction errors, we can also evaluate token-level prediction
errors. Given a ground-truth effect image X1, we extract its
concept tokens C1, and introduce a token prediction loss
LMSEpC

1

1, C1q. The total loss of ViCT is summarized as
follows:

LT “LMSEpC
1

1, C1q`LMSEpX̃1, X1q`LMSEpX
1

0, X0q. (8)

The ViCT is trained on our causal planning dataset (see
Sec. II-B).

IV. EXPERIMENTS

Our experiments aim to answer the following questions:
(1) Is our model design effective and applicable to visual
planning tasks? (2) How do the proposed key components
contribute to the model performance? (3) Are the learned
concepts and causal transitions interpretable? (4) Does the
proposed method exhibit generalization on novel tasks? To
answer these questions, we perform extensive experiments,
showing the proposed methods are interpretable, generaliz-
able, and capable of producing significantly better results
than baseline methods.

A. Evaluating Visual Planning on Dataset CCTP

To validate the effectiveness of our model design, we
employ PlaTe [4], the state-of-the-art method for visually-
grounded planning, as our baseline. To probe the contribution
of our proposed components, we replace each component
with alternative baselines to compare with. We replace the
proposed concept learner with strong baselines such as beta-
VAE [39] and VCT [31] model to verify the effectiveness of
our concept learning module. Additionally, we compare our
model to a goal-conditioned Double DQN agent [40] trained
with prioritized experience replay [41], noted as “w/ RL”.
Furthermore, to verify the necessity of our symbolization
process, we apply the reasoning process directly to the
concept tokens, employing our causal transition model to
search for states closest to the goal state within the concept
token spaces. We also conduct experiments where we further
remove the concept learning process. Instead, we use an
autoencoder to extract latent embedding for causal transition.
The corresponding results are denoted as “w/o. symbol” and
“w/o. concept”, respectively. The “w/o. concept” experiments
are limited to the level-1 dataset, as this method is unable to
avoid object collisions in the higher-level datasets. Finally,
we replace the explicit planning module with a transformer
architecture. It takes the initial and goal state concept sym-
bols, provided by our concept learner and symbolizer, as
inputs to generate the action sequence. We refer to this
variant as “w/o causal”. We also substitute the planning
module with random action predictions for each step as an
additional baseline for reference.

a) Evaluation metrics: To thoroughly inspect the per-
formance of visual planning, we design metrics including
Action Sequence Prediction Accuracy (ASAcc), Action Se-
quence Efficiency (ASE), and Final State Distance (FSD).
ASAcc is measured as the success rate of sequence pre-
diction. In level-1 and level-2 tasks, a successful prediction
entails moving the target object accurately to the position of
goal states without encountering any collisions with obstacles
(if present). In level-3 tasks, when the target object’s color
changes, success requires moving the object adjacent to the
dyer, applying the change_color action, and then moving
it to the goal position. In level-4 tasks, the target object
must also be correctly rotated for success. During testing,
MDP and search-based methods, including “Ours”, “Ours
w/ β-VAE”, “Ours w/o symbol”, and “Ours w/o concept”
generate the 5 most possible paths, and randomized algo-
rithms “Chance” and “Ours w/ RL” make 5 attempts for each
task. The top-1 accuracy evaluates the success of the most
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Fig. 4: Qualitative results of our visual planning model. The top two samples are obtained from the level-3 dataset, and the middle
two are from the level-4 dataset. Our model demonstrates its ability to manage tasks of varying lengths, effectively plan action sequences,
and generate intermediate and goal state images. Notably, the first sample from the level-4 dataset generates a different path than the
ground truth but still achieves success and maintains high efficiency. The bottom two samples are from our real-world data experiments,
corresponding to the level-3 dataset. To simplify implementation, we focus on visually planning the target objects in the real-world images,
ignoring the background.

likely path or the initial attempt, while the top-5 accuracy
checks if any of the 5 paths are successful. ASE measures
the efficiency of the planning by comparing the length of
the ground truth sequence to that of the predicted sequence.
It only considers the successfully predicted sequences. The
ASE is defined as follows:

ASE“

řN
i“1 IpΓ

pred
i qℓpΓgt

i q{ℓpΓpred
i q

řN
i“1 IpΓ

pred
i q

, (9)

where I is a indicator function for a successful prediction,
ℓ represents the length of an action sequence. Of note, the
ground truth action sequences in CCTP are the most efficient,
so the efficiency of a predicted sequence will be no more
than 1. FSD calculates the distance between the positions
of the foreground object in the final predicted state and in
the goal state. The distance is defined based on the object’s
coordinates w.r.t. the workbench.

b) Results: We can see from Tab. I that the proposed
method achieves significantly higher performance compared
with baselines. Specifically, we compare our method with
different ablative variants on CCTP dataset. Our method
outperforms baselines in terms of ASAcc by a large margin
and achieves the smallest FSD, which demonstrates our
method can obtain an accurate planning path to reach the
goal state. Our method achieves very competitive ASE.
Notably, certain baselines (e.g., Ours w/ RL) attain high
levels of ASE, but with a disproportionately lower ASAcc.
Moreover, our model maintains strong performance when
encountering hard tasks, while competitive baselines’ per-
formances significantly decrease as task difficulty increases.

TABLE I: Quantitative results for visual task planning. The best
scores are marked in bold.

Model
ID

ASAcc.(%)(Ò) ASE(Ò) FSD(Ó) ASAcc.(%)(Ò) ASE(Ò) FSD(Ó)
Top-1 Top-5 Top-1 Top-5

Dataset level-1 Dataset level-2

Chance 1.3 7.3 - 3.139 0.4 2.2 - 3.499
PlaTe [4] 38.9 - - - 15.3 - - -

Ours w/ β-VAE [39] 0.5 3.0 0.970 3.220 0.0 3.5 - 3.670
Ours w/ VCT [31] 54.1 60.6 0.972 1.483 1.6 4.9 0.988 1.294
Ours w/o symbol 65.8 76.9 0.983 1.197 41.0 52.6 0.962 1.627
Ours w/o concept 56.9 77.6 0.986 1.644 - - - -
Ours w/o causal 1.4 - - 3.326 0.3 - - 3.419
Ours w/ RL 29.7 35.1 0.991 2.418 2.5 6.0 1.000 3.150
Ours 97.9 99.2 0.971 0.025 99.4 99.6 0.981 0.013

Dataset level-3 Dataset level-4

Chance 0.0 0.4 - 3.513 0.1 0.4 - 3.147
PlaTe [4] 0.7 - - - 0.4 - - -

Ours w/ β-VAE [39] 0.0 0.5 - 3.596 0.0 0.0 - 3.107
Ours w/ VCT [31] 0.7 1.2 0.968 3.442 0.2 0.3 1.000 3.193
Ours w/o symbol 15.4 24.1 0.970 2.278 9.8 14.0 0.981 2.149
Ours w/o causal 0.0 - - 3.691 0.0 - - 3.201
Ours w/ RL 3.0 3.9 1.000 3.030 2.8 3.5 1.000 2.498
Ours 86.5 87.0 0.966 0.037 55.1 76.7 0.978 0.003

These results demonstrate the effectiveness of our model
design. Our full model achieves the best overall performance
in all four levels of tests, and each component of our model
contributes remarkably to the performance improvements.
The qualitative results are shown in Fig. 4.

B. Interpretable Concepts and Causal Transitions

We qualitatively show the interpretability of the concept
learned by our model. We randomly choose 2 images X0,f

and X1,f , substituting the concept token ci0 with ci1 for i“

1, 2, 3, 4, 5, 6, which are then fed into the concept detokenizer
and the decoder to generate new images. As Fig. 5 shows,



Fig. 5: Fine-grained attribute-level concept manipulation. The
concept learner generates new images by substituting each concept
token ci0 from X0,f with ci1 from X1,f .

(a) (b)

Fig. 6: Action effects on the learned disentangled concept
representations. (a) l2 norm between the concept vectors before
and after each action. (b) Distributions of position change induced
by each action.

with the properly learned concept representations, we could
perform fine-grained attribute-level concept manipulation.
This indicates that our concept learner is capable of disen-
tangling concept factors and demonstrates the interpretability
of our method.

We quantitatively demonstrate the interpretability of our
learned causal transitions with statistics of the corresponding
causal effects. To be specific, we aim to answer the question:
do the learned causal transitions have semantic meaning
consistent with the corresponding action? Fig. 6 (a) shows
the correlation between concepts and actions, measured with
l2 norm between the concept vectors before and after each
action. A larger l2 norm means a higher correlation. We can
see that the learned rotation actions only affect the rotation
status in the concept vector. Similarly, the horizontal and
vertical movements only affect the x and y coordinates. Fig. 6
(b) shows the distribution of position change induced by
7 displacement actions. For example, the position changes
of move_front distribute along the positive y-axis, while
those of move_back distribute along the negative y-axis.
This evidence indicates that 1) our learned concept is suc-
cessfully disentangled, which makes it possible for our model
to learn causal transitions, and 2) the learned causal transition
is consistently grounded to real-world actions with similar
semantics.

C. Generalization Tests

We design three experiments to test the generalizabiliy of
our model.

TABLE II: Quantitative results for generalization tests. The best
scores are marked in bold.

U
ns

ee
n

O
bj

ec
t

Model
ID

ASAcc.(%)(Ò) ASE(Ò) FSD(Ó) ASAcc.(%)(Ò) ASE(Ò) FSD(Ó)
Top-1 Top-5 Top-1 Top-5

Dataset level-1 Dataset level-2

Chance 0.6 4.7 - 3.203 1.1 3.2 - 3.591
PlaTe [4] 18.5 - - - 9.7 - - -
Ours w/o symbol 44.0 59.9 0.968 1.507 29.0 43.8 0.986 1.880
Ours w/o concept 37.1 60.5 0.950 1.319 - - - -
Ours w/o causal 1.7 - - 3.233 0.2 - - 3.563
Ours w/ RL 30.2 35.9 0.989 1.887 2.2 6.1 1.000 3.549
Ours 72.4 97.2 0.987 0.470 73.2 93.6 0.978 0.491

Dataset level-3 Dataset level-4

Chance 0.0 0.0 - 3.544 0 0.1 - 3.518
PlaTe [4] 0.6 - - - 0.8 - - -
Ours w/o symbol 12.6 22.5 0.990 2.710 6.9 11.7 0.972 2.917
Ours w/o causal 0.0 - - 3.467 0.0 - - 3.183
Ours w/ RL 1.9 5.3 1.000 3.484 1.4 4.9 1.000 3.370
Ours 61.8 66.9 0.960 0.307 29.1 43.9 0.954 0.424

Dataset level-1 Dataset level-2

U
ns

ee
n

Ta
sk

Chance 0.4 2.1 - 3.550 0.1 0.3 - 3.513
PlaTe [4] 1.4 - - - 0.5 - - -
Ours w/o symbol 63.1 78.0 0.974 1.022 40.0 51.9 0.980 1.407
Ours w/o concept 42.7 70.7 0.971 1.485 - - - -
Ours w/o causal 0.0 - - 3.536 0.0 - - 3.525
Ours w/ RL 26.3 30.1 0.994 2.159 2.8 7.0 1.000 3.417
Ours 98.7 99.3 0.985 0.015 98.2 99.4 0.991 0.019

R
ea

l-w
or

ld
D

at
a

Dataset level-1 Dataset level-2

Chance 2.0 5.0 - 3.261 1.0 2.0 - 3.370
PlaTe [4] 12.0 - - - 5.0 - - -
Ours 52.0 71.0 0.980 1.341 36.0 47.0 0.987 1.765

Dataset level-3 Dataset level-4

Chance 0.0 1.0 - 3.498 0.0 0.0 - 3.552
PlaTe [4] 1.0 - - - 1.0 - - -
Ours 21.0 27.0 0.993 1.436 11.0 15.0 1.000 1.735

a) Unseen Objects: Through this experiment, we aim
to investigate if our model can perform visual planning tasks
on objects unseen during training. We test our model on the
Unseen Object testing dataset (see Sec. II-B for details) and
compare the results with several baselines to demonstrate the
generalizability of our concept-based object representation
module. We expect our concept learner to recognize the
color, position, and size attributes of unseen object types
during testing. If this is the case, the transition model could
consequently apply transitions on these visual attributes for
successful manipulation tasks. As shown in Tab. II, our
model is significantly more robust than PlaTe and RL-based
methods against novel objects.

b) Unseen Tasks: Moreover, we aim to verify that our
model is flexible in processing atomic actions. We train our
model on tasks with only limited types of action combina-
tions, i.e., the Unseen Task dataset. In this experiment, PlaTe
only performs at the same level as a random guess, while
our model performs as well as it does when being trained
on the whole dataset (see Tab. II), which demonstrates the
generalizability of our method on unseen tasks.

c) Real-world Data: Finally, we assess our model’s
potential to generalize to real-world data. We collect a dataset
of real images using Intel RealSense D455, which consists
of four subsets, each representing a different difficulty level
and comprising 100 tasks (equivalent to one-tenth of our
validation sets’ size). The real-world tasks are the same as
the test tasks in dataset CCTP. The quantitative results are
demonstrated in Tab. II. Since the real-world data and the
CCTP dataset have inherent discrepancies, our model, which
was not finetuned with real-world data, exhibited a reduction
in ASAcc and FSD. However, our model can successfully
identify objects’ color, position, and size within the real-



world images, and outperform all the comparison models.
The qualitative results are shown at the bottom of Fig. 4. To
simplify implementation, we focus on visually planning the
target objects in the real-world images and ignore encoding
and decoding the background.

V. CONCLUSION

In this paper, we propose a novel visual planning model
based on concept-based disentangled representation learning,
symbolic reasoning, and visual causal transition modeling.
In the future, we plan to extend our model to more complex
planning tasks with diverse concepts and actions, and assist
robots in real down-stream application tasks.
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